Deep brain stimulation | |
---|---|
Intervention | |
DBS-probes shown in X-ray of the skull (white areas around maxilla and mandible represent metal dentures and are unrelated to DBS devices) |
|
MeSH | D046690 |
Deep brain stimulation (DBS) is a surgical treatment involving the implantation of a medical device called a brain pacemaker, which sends electrical impulses to specific parts of the brain. DBS in select brain regions has provided remarkable therapeutic benefits for otherwise treatment-resistant movement and affective disorders such as chronic pain, Parkinson's disease, tremor and dystonia.[1] Despite the long history of DBS,[2] its underlying principles and mechanisms are still not clear. DBS directly changes brain activity in a controlled manner, its effects are reversible (unlike those of lesioning techniques) and is one of only a few neurosurgical methods that allows blinded studies.
The Food and Drug Administration (FDA) approved DBS as a treatment for essential tremor in 1997, for Parkinson's disease in 2002,[3] and dystonia in 2003.[4] DBS is also routinely used to treat chronic pain and has been used to treat various affective disorders, including major depression. While DBS has proven helpful for some patients, there is potential for serious complications and side effects.
Contents |
The deep brain stimulation system consists of three components: the implanted pulse generator (IPG), the lead, and the extension. The IPG is a battery-powered neurostimulator encased in a titanium housing, which sends electrical pulses to the brain to interfere with neural activity at the target site. The lead is a coiled wire insulated in polyurethane with four platinum iridium electrodes and is placed in one of three areas of the brain. The lead is connected to the IPG by the extension, an insulated wire that runs from the head, down the side of the neck, behind the ear to the IPG, which is placed subcutaneously below the clavicle or in some cases, the abdomen.[5] The IPG can be calibrated by a neurologist, nurse or trained technician to optimize symptom suppression and control side effects.[6]
DBS leads are placed in the brain according to the type of symptoms to be addressed. For non-Parkinsonian essential tremor the lead is placed in the ventrointermediate nucleus (VIM) of the thalamus. For dystonia and symptoms associated with Parkinson's disease (rigidity, bradykinesia/akinesia and tremor), the lead may be placed in either the globus pallidus or subthalamic nucleus.[7]
All three components are surgically implanted inside the body. Under local anesthesia, a hole about 14 mm in diameter is drilled in the skull and the electrode is inserted, with feedback from the patient for optimal placement. The installation of the IPG and lead occurs under general anesthesia.[8] The right side of the brain is stimulated to address symptoms on the left side of the body and vice versa.
It has been shown in thalamic slices from mice[9] that DBS causes nearby astrocytes to release adenosine triphosphate (ATP), a precursor to adenosine (through a catabolic process). In turn, adenosine A1 receptor activation depresses excitatory transmission in the thalamus, thus causing an inhibitory effect that mimicks ablation or "lesioning".
Parkinson's disease is a neurodegenerative disease whose primary symptoms are tremor, rigidity, bradykinesia and postural instability.[10] DBS does not cure Parkinson's, but it can help manage some of its symptoms and subsequently improve the patient’s quality of life.[11] At present, the procedure is used only for patients whose symptoms cannot be adequately controlled with medications, or whose medications have severe side effects.[5] Its direct effect on the physiology of brain cells and neurotransmitters is currently debated, but by sending high frequency electrical impulses into specific areas of the brain it can mitigate symptoms[12] and/or directly diminish the side effects induced by Parkinsonian medications,[13] allowing a decrease in medications, or making a medication regimen more tolerable.
There are a few sites in the brain that can be targeted to achieve differing results, so each patient must be assessed individually, and a site will be chosen based on their needs. Traditionally, the two most common sites are the subthalamic nucleus (STN) and the globus pallidus interna (GPi), but other sites, such as the caudal zona incerta and the pallidofugal fibers medial to the STN, are being evaluated and showing promise.[14]
Research is being conducted as of 2007 to predict the onset of tremors before they occur by monitoring activity in the subthalamic nucleus. The goal is to provide stimulating pulses only when they are needed, to stop any tremors occurring before they start.[15]
DBS is approved in the United States by the Food and Drug Administration for the treatment of Parkinson's.[3] DBS carries the risks of major surgery, with a complication rate related to the experience of the surgical team. The major complications include haemorrhage (1–2%) and infection (3–5%).[16]
There is insufficient evidence to support DBS as a therapeutic modality for depression, however, the procedure may be an effective treatment modality in the future.[17]
Recently though, there have been more studies supporting the efficacy of DBS in treating depression. A study conducted at Emory University School of Medicine found that, "A significant decrease in depression and increase in function were associated with continuing stimulation. Remission and response rates were 18 percent and 41 percent after 24 weeks; 36 percent and 36 percent after one year and 58 percent and 92 percent after two years of active stimulation. Patients who achieved remission did not experience a spontaneous relapse. Efficacy was similar for Major Depressive Disorder and Bi-Polar patients, and no participant experienced a manic or hypomanic episode."[18]
A systematic review of DBS for treatment resistant depression and obsessive–compulsive disorder identified 23 cases—nine for OCD, seven for treatment-resistant depression, and one for both. It found that "about half the patients did show dramatic improvement" and that adverse events were "generally trivial" given the younger psychiatric patient population than with movements disorders.[19]
DBS for treatment related depression can be as effective as antidepressants, with good response and remission rates, but adverse effects and safety need to be more fully evaluated. Common side effects include "wound infection, perioperative headache, and worsening/irritable mood ... and ... increased suicidality".[20]
DBS has not been approved as an evidence-based therapy for depression or OCD in North America.
Deep brain stimulation has been used experimentally in treating a few patients with severe Tourette syndrome. Despite widely publicized early successes, DBS remains a highly experimental procedure for the treatment of Tourette's, and more study is needed to determine whether long-term benefits outweigh the risk.[21] The procedure is well tolerated, but complications include "short battery life, abrupt symptom worsening upon cessation of stimulation, hypomanic or manic conversion, and the significant time and effort involved in optimizing stimulation parameters".[22] As of 2006, there were five published reports of DBS in patients with TS; all experienced reduction in tics and the disappearance of obsessive-compulsive behaviors. "Only patients with severe, debilitating, and treatment-refractory illness should be considered; while those with severe personality disorders and substance abuse problems should be excluded."[22] There may be serious short- and long-term risks associated with DBS in persons with head and neck tics.
The procedure is invasive and expensive, and requires long-term expert care. Benefits for severe Tourette's are not conclusive, considering less robust effects of this surgery seen in the Netherlands. Tourette's is more common in pediatric populations, tending to remit in adulthood, so this would not generally be a recommended procedure for use on children. Because diagnosis of Tourette's is made based on a history of symptoms rather than analysis of neurological activity, it may not always be clear how to apply DBS for a particular patient. Due to concern over the use of DBS in the treatment of Tourette syndrome, the Tourette Syndrome Association convened a group of experts to develop recommendations guiding the use and potential clinical trials of DBS for TS.[23]
In August 2007, Nature reported that scientists in the US had stimulated a 38-year-old man who had been in a minimally conscious state for six years using DBS.[24] The patient initially had increased arousal and sustained eye-opening, as well as rapid bilateral head-turning to voice. After further stimulation, the previously non-verbal patient became capable of naming objects and using objects with his hands—for example, bringing a cup to his mouth. Moreover, he could swallow food and take meals by mouth, meaning he was no longer dependent on a gastrostomy tube.[25]
This result follows research carried out over 40 years, which has analyzed the effects of deep brain stimulation in the thalamus (and elsewhere) in patients with post-traumatic coma.[26][27][28] While this research has shown some potential, deep brain stimulation is not yet a reliable cure for patients in post-traumatic coma.
DBS has been used in the treatment of obsessive-compulsive disorder[29] and phantom limb pain.[30] Although the clinical efficacy is not questioned, the mechanisms by which DBS works are still debated.[31] Long-term clinical observation has shown that the mechanism is not due to a progressive lesion, given that interruption of stimulation reverses its effects.[31] Results of DBS in dystonia patients, where positive effects often appear gradually over a period of weeks to months, indicate a role of functional reorganization in at least some cases.[32] The procedure is being tested for effectiveness in patients with severe epilepsy.[33]
DBS has been tried for patients with Lesch-Nyhan syndrome in Japan, Switzerland and France.
While DBS is helpful for some patients, there is also the potential for neuropsychiatric side effects. Reports in the literature describe the possibility of apathy, hallucinations, compulsive gambling, hypersexuality, cognitive dysfunction, and depression. However, these may be temporary and related to correct placement and calibration of the stimulator and so are potentially reversible.[34] A recent trial of 99 Parkinson's patients who had undergone DBS suggested a decline in executive functions relative to patients who had not undergone DBS, accompanied by problems with word generation, attention and learning. About 9% of patients had psychiatric events, which ranged in severity from a relapse in voyeurism to a suicide attempt. Most patients in this trial reported an improvement in their quality of life following DBS, and there was an improvement in their physical functioning.[35]
Because the brain can shift slightly during surgery, there is the possibility that the electrodes can become displaced or dislodged. This may cause more profound complications such as personality changes, but electrode misplacement is relatively easy to identify using CT. There may also be complications of surgery, such as bleeding within the brain.
After surgery, swelling of the brain tissue, mild disorientation and sleepiness are normal. After 2–4 weeks, there is a follow-up to remove sutures, turn on the neurostimulator and program it.